

© 2018 California Institute of Technology. Government sponsorship acknowledged.

The Origin, Age, and Stratigraphy of Mars' South Polar Cap

Peter Buhler¹

Andrew Ingersoll², Sylvain Piqueux¹, Bethany Ehlmann^{1,2}, and Paul Hayne³

¹Jet Propulsion Laboratory, California Institute of Technology, ²California Institute of Technology, ³University of Colorado, Boulder

LPSC

2019.03.22

Background

What is the RSPC?

- 342B17+ "CO₂ ice could not survive in contact with "Throughout the summer, the polar frost low-albedo material."
- "Therefore, a residual water-ice cap is much more stable than a solid CO₂ one on Mars in the summertime."

- remained at the temperature of solid CO₂."
- "Thus Mars appears to have a residual polar cap of CO₂ in the south and one of H₂O in the north."

OK, it's CO₂, but why at the South Pole?

- "[From occultation] it can be seen that the southern residual cap must be higher than the northern one by at least 2 km."
- "Any solid CO₂ in the south would be in contact with atmospheric CO₂ at a pressure lower by about 2 mbar than in the north."
- "There is no reason to suppose a permanent CO₂ southern cap would be at a systematically lower temperature than the northern one."
- "Hence, solid CO₂ deposits in the south would be out of equilibrium and would gradually be transferred to the north...in well under 1000 years."
- "Excess solid carbon dioxide is probably present [buried] in the north residual cap."

Is the RSPC disappearing?

 "The erosion ... and other observations suggest that the present martian environment is neither stable nor typical of the past." –Malin+ (2001)

RSPC mass balance in Mars years 9–31 ~ -0.039% to +0.026% mean atmospheric CO₂ mass per martian year.

Viking vs. Curiosity pressure curves: no evidence yet for the 1–20 Pa increase expected from the possible loss of CO₂ from RSPC.

3 Outstanding Questions

1. How was the massive CO₂ deposit emplaced with its observed stratigraphy?

3. Why is permanent CO₂ at the south pole (not the north)?

The massive CO₂ deposit

"We find three distinct CO₂ subunits, each capped by a bounding layer (BL)." –Bierson et al. (2016)

- "CO₂ ice is deposited over much of the poles during low obliquity periods."
- "A remnant is sequestered below a water ice deposit (BL subunits), removing it from contact with the atmosphere."

Schematic Polar Stratigraphy

Does the H₂O seal the deposit?

- "All of these smaller troughs, depressions, and pits appear to result from erosion and removal of unit A_{A3} [the massive CO₂ deposit], with a strong component of sublimation and collapse."
- "The fracturing, not found in other SPLD units, may be a response to continuing unit A_{A3} sublimation after the pits had first formed."

Is the RSPC an extraordinary accident?

- If the massive CO₂ deposit is sequestered from the atmosphere, the same problem of "extraordinary accident" exists.
- "A scum layer of dark (low albedo) material may be buried beneath a topmost layer of frost, but as soon as this topmost layer is removed, the dark dust [or H₂O ice] will heat up and any CO₂ beneath it will escape." –Murray and Malin (1973)
- But what happens next?

Mars' Pressure History Use a look-up table:

Equilibrium Frost Temperature

Equilibrium Pressure

Mars' Pressure History and Stratigraphy

Long-term pressure history of Mars

- Median Amazonian pressure: 1.32 × present
- Interquartile range: 0.77 to 1.67 × present

Why is the permanent CO₂ in the south?

"There is no reason to suppose a permanent CO₂ southern cap would be at a systematically lower temperature than the northern one."

– Murray and Malin (1973)

Emitted thermal flux

Absorbed solar flux

Condensed CO₂

Will perennial northern CO₂ ever exist?

Would require significant changes to \bar{A}_{CO_2} and/or ϵ_{CO_2}

CO₂ protects the SPLD at high obliquity

- CO₂ protects the SPLD from ablating.
- CO₂ does not protect the NPLD.

Conclusions

1. How was the massive CO₂ deposit emplaced with its observed stratigraphy?

Equilibrated co-evolution with the atmosphere, driven by orbital forcing. H₂O impurities accumulate into lag deposits.

2. Why does the RSPC exist?

Negative feedback between surface CO₂

ablation, dark lag formation, and basal

CO₂ sublimation.

3. Why is permanent CO₂ at the south pole (not the north)?

The albedo/emissivity of the southern CO2 is higher, overwhelming the lower elevation of the northern cap.

